

Circuitos: Circuitos eléctricos

CIRCUITOS ELÉCTRICOS

- 1. Introducción.
- 2. Magnitudes. Unidades. Medidas.
- 3. Leyes.
- 4. El circuito eléctrico. Elementos.
 - 4.1. Generadores.
 - 4.2. Receptores.
 - 4.3. Elementos control.
 - 4.4. Elementos protección.
 - 4.5. Conductores
 - 4.6. Conectores
- 5. Asociación de resistencias
- 6. Res. circuitos corriente continua

Circuito: Conjunto de elementos que permiten el flujo de la corriente eléctrica a su través.

Magnitudes eléctricas: Permiten describir matemáticamente el comportamiento del circuito:

Magnitud	Representa	Símbolo	Unidad
Intensidad	Cantidad de carga por unidad de tiempo	I	Α
Tensión	Diferencia de potencial entre dos puntos	V	V
Resistencia	Dificultad al paso de corriente	R	Ω
Potencia	Energía consumida en la unidad de tiempo	Р	W

LEYES

El comportamiento de los circuitos eléctricos se basa en tres leyes fundamentales

Ley de Joule: Cuando la corriente eléctrica atraviesa un conductor, éste se calienta. El calor desprendido es directamente proporcional a la resistencia del conductor, al tiempo y al cuadrado de la intensidad.

$$E_{calor} = R \cdot I^2 \cdot t$$

Leyes de Kirchhoff:

1^a Ley: Ley de los nudos o de las corrientes

En todo **nudo**, la suma de corrientes entrantes es igual a la suma de corrientes salientes.

$$\sum_{k=1}^{n} I_k = I_1 + I_2 + I_3 \dots + I_n = 0$$

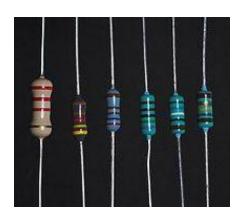
2ª Ley: Ley de las mallas o de las tensiones de malla

En toda **malla** la suma de todas las caídas de tensión es igual a la suma de todas las fuentes de tensión. $\sum_{k=1}^n V_k = V_1 + \underbrace{V_2 + V_3 \ldots + V_n}_{} = 0$

ELEMENTOS DE UN CIRCUITO

Los circuitos eléctricos están formados por una serie de elementos que se agrupan en las siguientes familias:

- Generadores
- Receptores
- Elementos de control
- Elementos de protección
- Conductores
- Conectores.


Generador:

Dispositivo que mantiene una diferencia de potencial entre dos de sus puntos, llamados polos

Receptores:

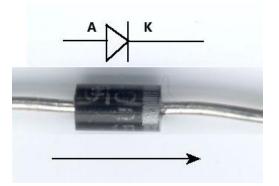
Elementos que transforman la energía eléctrica de los generadores en otro tipo de energía (veremos los resistores).

Circuitos electrónicos

ELEMENTOS DE UN CIRCUITO

- Generadores
- Receptores
- Elementos de control
- Elementos de protección
- Conductores
- Conectores.

Elementos de control:


Permiten la conexión y desconexión de los circuitos eléctricos

Dentro de los elementos de control estudiaremos más a fondo los:

Diodos:

Componente electrónico que sólo permite la circulación de corriente conectado en polarización directa (polo positivo de la batería al **ánodo**, y negativo al **cátodo**).

ELEMENTOS DE UN CIRCUITO

- Generadores
- Receptores
- Elementos de control
- Elementos de protección
- Conductores
- Conectores.

Elementos de protección:

Elementos utilizados para disminuir el riesgo de accidentes, como los causados por cortocircuitos, sobrecargas o contacto de personas o animales con elementos en tensión.

Conductores:

Elementos que sirven de asiento a la intensidad de corriente eléctrica, conectando los distintos elementos del circuito.

Conectores:

Elementos utilizado para realizar las uniones o empalmes entre los componentes del circuito

ASOCIACIÓN DE RESISTENCIAS

Proceso que tiene por objeto facilitar los procesos de cálculo de un circuito sustituyendo su conjunto de resistencia por una única, llamada **resistencia equivalente**, de tal forma que no se produzcan modificaciones en el funcionamiento global el circuito original.

Asociación	Descripción	Esquema	Valor equivalente
Serie	Varias resistencias están conectadas en serie cuando el final de la primera se conecta con el principio de la segunda y así sucesivamente.	$\stackrel{R1}{-\!$	$R_{serie} = R_1 + R_2 + R_3 = \sum_{i=1}^{n} R_i$
Paralelo	Las resistencias están conectadas de modo que se unen por un lado todos los principios de las resistencias y por otro lado todos los finales	$\begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \longrightarrow \begin{array}{c} R_p \\ \end{array}$	$\frac{1}{R_{paralelo}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \sum_{i=1}^{n} \frac{1}{R_i}$
Mixta	Combinación de los dos casos		Se resuelve descomponiendo
	antriores	C R2 R3 D	el sistema en asociaciones sencillas.